
Storm: a fast transactional dataplane for
remote data structures

Stanko Novakovic1∗ Yizhou Shan3 Aasheesh Kolli2, 4 Michael Cui2
Yiying Zhang3 Haggai Eran5, 6 Boris Pismenny5 Liran Liss5 Michael Wei2

Dan Tsafrir2, 6 Marcos Aguilera2

1Microsoft Research 2VMware 3Purdue University 4 The Pennsylvania State University 5 Mellanox 6 Technion

Abstract
RDMA technology enables a host to access the memory of a
remote host without involving the remote CPU, improving the
performance of distributed in-memory storage systems. Previ-
ous studies argued that RDMA suffers from scalability issues,
because the NIC’s limited resources are unable to simultane-
ously cache the state of all the concurrent network streams.
These concerns led to various software-based proposals to
reduce the size of this state by trading off performance.

We revisit these proposals and show that they no longer
apply when using newer RDMA NICs in rack-scale environ-
ments. In particular, we find that one-sided remote memory
primitives lead to better performance as compared to the pre-
viously proposed unreliable datagram and kernel-based stacks.
Based on this observation, we design and implement Storm,
a transactional dataplane utilizing one-sided read and write-
based RPC primitives. We show that Storm outperforms eRPC,
FaRM, and LITE by 3.3x, 3.6x, and 17.1x, respectively, on an
InfiniBand cluster with Mellanox ConnectX-4 NICs.

CCS Concepts • Networks → Network performance evalua-
tion; • Software and its engineering → Distributed systems
organizing principles;

Keywords RDMA, RPC, data structures

1 Introduction
RDMA is coming to data centers [3, 12, 21, 28, 47]. While
RDMA was previously limited to high-performance com-
puting environments with specialized Infiniband networks,

* Work done while at VMware

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of
this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’19, June 3–5, 2019, Haifa, Israel
© 2019 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6749-3/19/06. . . $15.00
https://doi.org/10.1145/3319647.3325827

RDMA is now available in cheap Ethernet networks using
technologies such as RoCE [2] or iWARP [36]. The main
novelty of RDMA is one-sided operations, which permit an
application to directly read and write the memory of a remote
host without the involvement of the remote CPU. In theory,
one-sided operations are supposed to lower latency, improve
throughput, and reduce CPU consumption. However, prior
work shows that one-sided operations suffer from scalability
issues: with more than a few hosts, overheads in RDMA can
overwhelm the benefits that it provides [10, 16].

Our first contribution is a study of multiple generations of
RDMA NICs to understand how hardware evolution addresses
(or not) its scalability concerns. The conventional wisdom
is that one-sided RDMA performs poorly because of three
issues (§3). First, it requires the use of reliable connections,
which can exhaust the memory cache of the NIC. Second, one-
sided RDMA typically demands virtual-to-physical address
translation and memory-region protection metadata, which can
also exhaust the NIC cache. Third, one-sided RDMA can incur
many network round trips when an application wants to chase
pointers remotely in dynamic data structures.

In this paper, we reexamine these problems in light of new
and better hardware relative to prior work [10, 16, 42]. We find
that some of the problems are mitigated; they are no longer a
concern for rack-scale systems of up to 64 machines. Through
experiments, we demonstrate that newer hardware efficiently
supports a significantly larger number of connections than be-
fore, eschewing the scalability problem for rack-scale. Further-
more, we argue that connections actually help performance, as
they permit delegating congestion control to the hardware and
enable one-sided operations. Thus, systems should use reliable
connections as the only transport for RDMA communication
(§4). This is in stark contrast to some previous proposals, such
as HERD [15], FaSST [16], and eRPC [14], which call for
abandoning reliable connections with one-sided operations in
favor of the unreliable transport with send/receive operations.

The second issue (virtual address translation and protection
metadata) is mitigated in newer hardware but remains. While
future hardware might solve this problem altogether (with
larger NIC cache and better mechanisms to manage it), we
must still address it today. Prior solutions suggest the use of
huge pages to reduce region metadata [10] or access RDMA

https://doi.org/10.1145/3319647.3325827

SYSTOR ’19, June 3–5, 2019, Haifa, Israel Novakovic et al.

using physical addresses through a kernel interface [42]. These
approaches are effective but have some drawbacks: huge pages
are prone to fragmentation, while a kernel interface suffers
from syscall overheads and lock contention issues. In this
work, we propose enforcing contiguous memory allocation
and leveraging the support for physical segments in user-space
(§4): We find this approach to greatly reduce region metadata
without the concerns of fragmentation or kernel overheads.

Third issue (round trips to chase pointers) is fundamental
but arises only in certain workloads and data structures that
require pointer chasing. Prior solutions fall in two categories:
(1) replace one-sided operations with RPCs [14, 16], so that
the RPC handler at the remote host can chase the pointers and
send a reply in a single round trip, or (2) use data inlining
and perform larger one-sided reads [10]. In this work, we
adopt a new approach that performs better than prior solutions:
the system dynamically determines whether to use one-sided
operations or RPCs, depending on whether pointers need to
be chased, and then uses the best mechanism. We refer to this
hybrid scheme combining one-sided reads and write-based
RPCs as one-two-sided operations (§4). When using RPCs,
we employ one-sided write operations to transmit the RPC
requests and replies.

Based on our insights, we design and implement a high-
speed, transactional RDMA dataplane called Storm (§5). Storm
can effectively use one-sided operations in a rack-scale sys-
tem, despite prior concerns that they suffer from poor perfor-
mance [14, 16]. We evaluate Storm and compare it against
three state-of-the-art RDMA systems: FaSST/eRPC [14, 16],
FaRM [10], and LITE [42].

eRPC is designed to avoid one-sided operations altogether.
We show that Storm outperforms eRPC up to 3.3x by effec-
tively using one-sided operations for direct reads and RPCs.
Unlike two-sided reads, one-sided reads enable full-duplex
input-output operations per second(IOPS) rates; no CPU-NIC
interaction for processing replies. FaRM is designed and eval-
uated under an older generation of hardware and includes a
locking mechanism to share connections. Our measurements
show that this mechanism is no longer needed and produces
overhead with newer hardware; we thus improve FaRM by
removing the locking mechanism and our comparison refers
to this improved design. Our evaluation shows that Storm
outperforms the improved FaRM up to 3.6x. Our better perfor-
mance comes primarily from avoiding large reads in FaRM
and instead using fine-grained reads combined with our hybrid
one-two-sided operations. For smaller key-value pairs, FaRM
performs better compared to our FaRM measurements, which
are based on 128-byte data items (1KB bucket neighborhood
size). Smaller key-value pairs result in smaller bucket sizes,
leading to higher IOPS rates. Finally, LITE is designed to work
in the kernel; we improved LITE by extending it with support

for asynchronous operations; our comparison refers to this im-
proved scheme. Our evaluation shows that Storm outperforms
the improved LITE up to 17.1x. Our better performance comes
primarily from using user-space operations and a design that is
free of dependencies, while we find that LITE is bottlenecked
by the kernel overheads and sharing among the kernel and
user-level threads (§6).

To summarize, we make the following contributions:

• We perform an experimental study of three generations
of hardware to understand how its evolution addresses
(or not) each problem facing one-sided operations.
• We build a fast RDMA dataplane called Storm, which in-

corporates the lessons we learned from our experimental
study. Storm provides a well-understood transactional
API for manipulating remote data structures and allows
the developer to implement any such data structure using
a callback mechanism.
• We evaluate Storm and compare it against eRPC, and

improved versions of FaRM and LITE, dubbed Lock-
free_FaRM and Async_LITE. We show that Storm per-
forms well in a rack-scale setting with up to 64 servers
and outperforms eRPC, lock-free FARM, and Asynchro-
nous LITE by 3.3x, 3.6x, and 17.1x in throughput.

Ultimately, Storm refutes a widely held belief that one-sided
operations—the main novelty of RDMA—are inefficient due
to its scalability issues.

2 Background

2.1 Remote Direct Memory Access (RDMA)

RDMA allows applications to directly access memories of
remote hosts, with user-level and zero-copy operations for ef-
ficiency. Moreover, RDMA offloads the network stack to the
Network Interface Card (NIC), reducing CPU consumption.
RDMA was originally designed for specialized InfiniBand (IB)
networks used in high-performance computing [35]. More re-
cently, the IB transport has been adapted for Ethernet networks,
bringing RDMA to commodity datacenter networks [12, 47].

Memory management. To use RDMA, applications regis-
ter memory regions with the NIC, making them available
for remote access. During registration, the NIC driver pins
the memory pages and stores their virtual-to-physical address
translations in Memory Translation Tables (MTTs). The NIC
driver also records the memory region permissions in Mem-
ory Protection Tables (MPTs). When serving remote memory
requests, the NIC uses MTTs and MPTs to locate the pages
and check permissions. The MTTs and MPTs reside in system
memory, but the NIC caches them in SRAM. If the MTTs
and MPTs overflow the cache, they are accessed from main
memory via DMA/PCIe, which incurs overhead.

Storm: a fast transactional dataplane for remote data structures SYSTOR ’19, June 3–5, 2019, Haifa, Israel

Queue pairs. Applications issue RDMA requests via the IB
transport API, known as IB verbs. IB verbs use memory-
mapped control structures called Queue Pairs (QPs). Each QP
consists of a Send Queue (SQ) and a Receive Queue (RQ). Ap-
plications initiate RDMA operations by placing Work Queue
Entries (WQEs) in the SQ; when operations complete, appli-
cations are notified through the Completion Queue (CQ). This
asynchronous model allows applications to pipeline requests
and do other work while operations complete.

RDMA supports two modes of communication: one-sided
performs data transfers without the remote CPU; two-sided
is the traditional send-receive paradigm, which requires the
remote CPU to handle the requests. One-sided operations
(read/write) deliver higher throughput (i.e., IOPS), while
two-sided operations (send/recv) offer more flexibility as
they involve the remote CPU.

Transports. RDMA supports different transports; we focus
on two: Reliably Connected (RC) and Unreliable Datagram
(UD). The RC transport requires endpoints to be connected
and the connection to be associated with a QP. For each QP, the
system must keep significant state: QP metadata, congestion
control state [28, 47], in addition to WQEs, MTTs, and MPTs.
QP state amounts to ≈375B per connection [14]. UD does not
require connections; a single QP allows an endpoint to com-
municate with any target host. Thus, UD requires significantly
fewer QPs, which saves transport state. But UD has some
drawbacks: it is unreliable (requests can be lost), it does not
support one-sided operations, and it requires receive buffers to
be registered with the NIC, which impacts scalability.

2.2 Distributed in-memory systems using RDMA

Prior work shows how to build distributed in-memory storage
systems using RDMA [7, 10, 16, 26, 27, 38, 46]. Such storage
systems tend to have (i) high communication fan out; (ii) small
data item size, and (iii) moderate computational overheads.
Systems with these properties benefit from RDMA’s low-
latency and high IOPS rates. For example, in a transactional
store, clients issue transactions with many read/writes on dif-
ferent objects, where data is partitioned across the servers [6].
Using RDMA, clients can read/write data using reads and
writes or implement lightweight RPCs for that purpose, re-
ducing the end-to-end latency and improving throughput.

3 Motivation
3.1 Problem statement

Our main goal is to use RDMA efficiently and scalably in a
rack-scale setting. While some companies have deployments
with thousands of machines, the vast bulk of enterprises use
rack-scale deployments, consisting of one or a few racks with
up to 64 machines in total; that is our target environment. Prior
work has shown that RDMA-based distributed storage systems

do not scale well in these settings [10, 14, 42]. As we add more
machines and increase their memory, the amount of RDMA
state increases. For good performance, the active RDMA state
must be in the NIC’s SRAM cache, but this cache is small
and can be exhausted with a few remote peers [10]. When
that happens, RDMA state spills to CPU caches and main
memory, requiring expensive DMA operations over PCIe to
access it. PCIe latency adds 300-400ns on unloaded systems
to several microseconds on loaded systems [24, 32]. These
DMA overheads are exacerbated with transaction processing
workloads, which have high fan-out, fine-grained accesses.

3.2 Shortcomings of prior art

To mitigate this problem, several software solutions have been
proposed. We focus on three systems trying to address RDMA
scalability issues in software.

Systems using one-sided operations. Previously proposed
FaRM [9] and LITE [42] use one-sided operations and try
to reduce the number of QPs by sharing them across groups
of threads. To share, these systems use locks, but locking de-
grades throughput [10]. Also, FaRM uses large reads to reduce
the number of round-trips when performing lookups, limiting
maximum throughput.

Unreliable datagram transport. Another way to reduce QP
state is to use the UD transport, as in FaSST/eRPC [14, 16].
With UD, a thread uses just one QP to talk to all the machines
in the cluster. However, UD precludes the efficient one-sided
operations (read/write), requires application-level retrans-
mission and congestion control, all of which limit maximum
throughput (§6). Furthermore, we show that managing receive
queues in UD impacts scalability.

Kernel-space RDMA stacks. LITE [42] provides a kernel
interface for RPCs and remote memory mapping. Thus, LITE
uses physical addressing and eliminates MTT/MPT overhead
in the NIC, but it adds additional overhead due to frequent
system calls which are now somewhat more costly due to
recent kernel patches (i.e., KPTI, retpoline) [4]. Moreover,
LITE operations are blocking, which limits concurrency and
throughput. We extend LITE with asynchronous reads and
RPCs to improve its throughput. This version achieves 2×
higher throughput for a single thread (§6), but the maximum
IOPS with multiple threads remains small compared to RDMA
on a modern NIC. We find this occurs because of serialization
and lock contention in LITE.

3.3 Revisiting RDMA hardware capabilities

Systems like FaRM or LITE were designed for older gen-
erations of NICs with very limited processing and memory
resources. Their design choices (e.g., QP sharing and soft-
ware address translation) improve performance on such NICs
but underutilize the capabilities of newer hardware (CX4 and

SYSTOR ’19, June 3–5, 2019, Haifa, Israel Novakovic et al.

0

10

20

30

40

160 320 480 640 800 960 1120 1280

R
e
m

o
te

 r
e
ad

s
/
u
s

Number of connections

2MB, 1MR (CX5) 4KB, 1024MR (CX5)

2MB, 1MR (CX3) 4KB, 1MR (CX5)

Figure 1. CX3 vs. CX5 comparison. CX5 provides better perfor-
mance even when using 4KB pages (as opposed to 2MB) and a larger
number of memory regions (1024MR). CX3 performs much worse
even with 2MB pages and 1MR.

CX5). Figure 1 tries to capture a significant performance gap
between CX3 and CX5 Mellanox RoCE NICs. It shows the
throughput per machine for a workload that performs random
64-byte remote reads on 20GB of memory (2MB page sizes).
For CX5, we show the performance when using 4KB pages
and also when MPTs are larger; 4KB,1024MR (CX5) uses
4KB pages and breaks the 20GB of buffer space into 1024
smaller RDMA memory regions (MR). On the X-axis we vary
the number of connections between the source and destination
servers. The RoCE hardware is described in Table 3.

Figure 1 shows that (i) CX5 significantly outperform CX3;
(ii) CX5 scales better with the number of connections than
CX3. We measure the throughput reductions going from 160
to 1280 connections to be: 83%, 42%, and 32% for CX3, CX4,
CX5, respectively (CX4 results omitted for clarity); (iii) MTT
and MPT remain a significant overhead with many memory re-
gions and large page counts. Finally, we find that CX5 through-
put becomes constant at around 10000 QP connections after
reaching zero cache hit rate. The constant throughput that we
measure is around 10 reqs/ µs, which is equal to the maximum
throughput a CX3 can provide (when there is no contention).
Next, we list a number of factors that drive the better perfor-
mance of modern NICs.

Larger caches, better cache management. CX4 and CX5
have larger caches (≈2MB) [14] for RDMA state, reducing the
number of PCIe/DMA operations on system memory. More-
over, these NICs can better utilize their cache space, with
improved prefetching, higher concurrency, and better cache
management [24]. Such optimizations allow a modern RDMA
NIC to deliver competitive throughput even when there are
virtually no cache hits on the NIC.

More and improved processing units. Modern NICs are
equipped with increasingly powerful Processing Units (PUs).
This allows NICs to issue more requests in parallel, which in
turn increases throughput and hides PCIe latency to fetch data
on cache misses [24]. This challenges the need for various
aggregation techniques and data layout optimizations used
previously. For a sufficient number of active QP connections
(each mapped to a single PU), a CX5 RoCE delivers close to
40 million reads per second (no contention).

The NIC’s ability to support more active connections allows
allocating exclusive connected QPs to threads, reducing QP
sharing overheads (lock contention) and enabling one-sided
operations.

Physical segment support. CX4 and CX5 support physical
segments with bound checks. While LITE on CX3 requires
kernel involvement for protection, we can now use physical
segments from user space. This mechanism bypasses virtual-
to-physical translation and reduces the MPT and MTT sizes.
This is important for hosts with large persistent-memory sys-
tems with tens of TBs to a PB of memory [29, 40]. In such sys-
tems, even 1GB pages could lead to large MTTs (e.g., 100TB
would require close to 1MB of MTT with 1GB pages). Phys-
ical segments support arbitrarily large memory regions with
just one MPT entry and no MTTs.

Efficient transport protocols. QPs in RC consume 375B per
connection [14], and RC requires many connections, which
can overwhelm the NIC caches. Modern NICs provide a new
Infiniband transport called Dynamically Connected Transport
(DCT) [1], which can share a QP connection across multiple
hosts, thereby reducing the amount of QP state. DC is not
available for RoCE and suffers from frequent reconnects which
diminish its purpose [16]. In this paper we focus on the RC
transport. As we show, RC scales well on clusters with up to
64 hosts.

3.4 Revisiting prior work on improved RDMA

A key contribution of this paper is to show that on modern
NICs, one-sided primitives can outperform alternatives for
moderate cluster sizes (tens of machines), even when the NIC
caches are being thrashed. For instance, on CX5 it takes on
the order of at least 2500 to 3800 concurrent connections for
reads performance to become as low as UD-based send/re-
ceive [14, 16]. We expect the break-even point to increase in
the future through the improvements mentioned in §3.3, and ar-
gue that one-sided operations are best for building low-latency,
high-throughput, and low-CPU utilization systems.

4 Design principles
We propose four design principles for RDMA-based in-memory
rack-scale systems:

Storm: a fast transactional dataplane for remote data structures SYSTOR ’19, June 3–5, 2019, Haifa, Israel

1. Leverage RC connections. As we mentioned, RC has a
scalability cost: it consumes more transport-level state than
UD, which can lead to NIC cache thrashing. We show that new
hardware—with larger caches, better cache management, and
more processing units—changes the trade-off in favor of RC in
rack-scale deployments. That is, the cost is more than offset by
the many benefits of RC: (1) RC allows lightweight one-sided
primitives (read/write) that have lower CPU utilization
and achieve higher IOPS; (2) RC offloads retransmissions
from the CPU to the NIC, and (3) RC offloads congestion
control as well. In addition to one-sided operations, we show
the benefit of RC connections for RPCs over UD, by using
RDMA write.

2. Minimize RDMA region metadata. While new hardware
addresses NIC cache state concerns for RC, another issue re-
mains: cache state for MPTs and MTTs. To address this prob-
lem, we use two techniques. First, we minimize the number
of registered RDMA memory regions by using a contiguous
memory allocator (CMA) [10]. Such an allocator requests
large chunks of memory from the kernel and manages small
object allocations. Thus, we only register a small number of
large chunks that we expand and shrink dynamically as the
application allocates/deallocates memory, minimizing MPTs.
The system could then use on-demand paging to repurpose
unused pages (though current support is limited to 4KB pages).
Dynamically expanding/shrinking a region can be achieved
with little downtime by leveraging Linux CMA. Once the re-
gion is expanded/shrunk, it has to be re-registered for RDMA.

Second, to reduce the memory translation table metadata
(MTTs), we propose using physical segments, a feature avail-
able in newer RDMA NICs such as CX5 [25]. Physical seg-
ments export physical memory with user-defined bounds with
no MTT overhead, and this feature is available in user-space.⋆

Physical segments were intended for single-tenant use; using
them in a host with many tenants requires care to avoid se-
curity issues when exposing physical memory. We propose
a solution to these issues, by mediating the registration of
physical segments by the kernel. This approach is secure and
imposes minimum overhead since kernel calls are off the data
path. Moreover, this approach is more efficient than using huge
pages (2MB or 1GB) to reduce the MTTs [10]. Huge pages
lead to fragmentation and waste memory [18, 34], and may
not suffice: for large memories with 100s of TBs, even 1GB
pages result in large MTTs. It is important to limit the num-
ber of physical segments, as they are allocated using Linux
CMA [23], and it may not be able to efficiently handle multiple
growing regions that need to be physically contiguous.

⋆Unlike LITE, which enforces protection in the kernel.

3. Try reads first, then switch to RPCs. One-sided reads
deliver high IOPS for simple lookups [10, 26, 27, 46]. How-
ever, they are less efficient to access data structures with cells
and pointers, such as skip lists, trees, and graphs, which require
pointer-chasing. Thus, prior work proposes two alternatives:
(1) use RPCs implemented with send/recv verbs [14, 16] or
(2) fetch more data at a time [10], arranging cells accordingly.

With new hardware, we show that the best approach is as
follows. First, use one-sided reads to fetch one cell at a time.
Our evaluation shows that combining cells and fetching more
data results in lower throughput. Second, if the one-sided
read reveals that we must chase pointers, switch to using
RPCs. We call this hybrid scheme one-two-sided operations.
Furthermore, we show that RPCs can be implemented effi-
ciently using one-sided writes.

4. Resize and/or cache. For remote reads to be effective,
data structure operations should require one round trip in the
common case. Otherwise, RPCs are proven to be more ef-
fective [16]. One round trip per operation is hard to achieve,
especially with pointer-linked data structures. This work pro-
poses a simple approach, which is to trade abundant memory
for fewer round trips with one-sided operations. There are two
ways to achieve this trade. First, clients could cache item ad-
dresses for future use, as in DrTM+H [43]. Second, for hash
tables, when RPC usage becomes excessive due to collision
induced pointer chasing, one should resize the data structure
to keep the occupancy low. We claim that the amount of con-
sumed memory is not significant, especially in the face of
high-density persistent memory technologies. For the latter,
we find that keeping the occupancy below 60-70% is sufficient
to emphasize the performance benefits of one-sided reads. Nev-
ertheless, we are looking into ways to repurpose the unused
portions of allocated memory.

5 Design and Implementation of Storm

Following our principles (§4), we design and implement Storm,
a fast RDMA dataplane for remote data structures. Storm is
designed to run at maximum IOPS rate of the NIC by using
RDMA primitives and by minimizing the active protocol state.
Storm exposes the familiar transactional API to the user.

Figure 2 shows the high-level design of Storm. Two inde-
pendent data paths process remote requests coming from the
local process: RPCs and one-sided reads (RR). The event loop
processes inbound requests and all event completions. The
Storm TX module provides a transactional API to the user by
leveraging the data structure API and the RPC/RR data paths
to execute transactions using a two-phase commit protocol.

SYSTOR ’19, June 3–5, 2019, Haifa, Israel Novakovic et al.

Storm dataplane

Remote data structure

RR

Event loop

RPC

Connection & memory
management

Storm
TX

RPC_handler lookup_start lookup_end

Ap
pli

ca
tio

n

RD
M

A
ne

tw
or

k
Figure 2. Storm high-level design. Independent pipelines for remote
reads and RPCs. A single event loop processing all completions. Data
structure completely independent of the data plane. The developer
implements the data structure interface consisting of three callbacks.

5.1 Contiguous memory regions

To achieve best performance, we must manage memory effi-
ciently in RDMA. Earlier, Figure 1 showed that large MTTs
and MPTs leads to significant performance degradation, even
on modern hardware. Thus, Storm aims to allocate virtually
contiguous memory when possible to minimize the number
of registered RDMA regions. By doing so, Storm minimizes
the MPT state. In addition, Storm can allocate physically con-
tiguous memory and expose it as one physical segment [25],
requiring only a single MTT and one MPT entry. The physical
segment support requires a trusted entity to perform memory
registration, as this capability allows access to any part of the
machine’s physical memory. In Storm, we require from all
applications to register physical segments through the OS. The
overhead is negligible as registration is done off of the critical
path. With sufficiently large pages, physical segments may not
be necessary. Thus, in most of our experiments we do not use
them. However, future storage-class memory systems with PB
of memory will require support for physical segments.

5.2 Remote write-based RPCs

Storm leverages RDMA write with immediate operations to
send and receive messages. This primitive allows the client
to prepend a custom header to each message, which is useful
for communicating additional information about the sender
(e.g., process ID, coroutine ID, etc). More importantly, writes
with immediate enables scalable polling on the receiver; the
receiver receives a notification via a receive completion queue
for each received message. In addition, the IB verbs interface
also permits sharing a single completion queue across multiple

senders. Thus, the receiver does not have to poll on multiple
message buffers and multiple receive queues, improving scala-
bility and throughput.

Algorithm 1 Processing a read-set item in Storm TX

1: Input: Data structure object ID, key, size
2: Output: Data item from remote memory
3: success ← f alse
4: reдion_id,o f f set , size ← lookup_start(object_id,key)
5: if reдion_id , −1 then
6: bu f f er ← remote_read(reдion_id,o f f set , size)
7: success ← lookup_end(bu f f er ,object_id,key)
8: if success , true then
9: bu f f er ← rpc_send(object_id,key,READ)

10: success ← lookup_end(bu f f er ,object_id,key)

5.3 Storm remote data structure API

Storm exposes an intuitive and well-understood transactional
API for manipulating remote data structures (Table 2). Clients
add to the read/write sets and commit transactions at the end.
Storm’s event loop must be invoked periodically to process
event completions and execute requests coming from the other
nodes in the system.

Internally, Storm provides the following programming model
for remote data structures: Developers implements three call-
back functions and register them with the Storm dataplane (Ta-
ble 1). These functions are implemented as part of the remote
data structure. rpc_handler is used for lookups on the owner
(receiver) side. Locks and commits are also implemented in
rpc_handler. lookup_start is the remote lookup handler for
looking up a remote data structure’s metadata on the client
side. This metadata could be cached data structure addresses
or simply a guess for an object’s address based on a hash.

Algorithm 1 shows how the Storm dataplane on the client
side processes each request from the read set. It first invokes
lookup_start to get the RDMA region ID and offset where the
requested item may reside. If successful, the client looks up
the data at the returned address using a remote read.

When a lookup is finished, the client invokes lookup_end to
validate the returned data. If the data is not valid (e.g., the read
key does not match the requested key), the client issues an RPC.
lookup_end may decide to cache the address of the returned
object for future use. This depends on the remote data structure
implementation. Current RDMA technology does not allow
additional remote reads without hurting performance, but fu-
ture faster interconnects may change this trade-off. Invoking
lookup_end is necessary for lookups using remote reads, but it

Storm: a fast transactional dataplane for remote data structures SYSTOR ’19, June 3–5, 2019, Haifa, Israel

Table 1. Storm remote data structure API
API Description
rpc_handler local RPC handler
lookup_start get data item region ID and offset
lookup_end check if successful and cache

Table 2. Storm TX API
API Description
storm_eventloop process requests and completions
storm_start_tx start a new transaction
storm_add_to_read_set add an item to read set
storm_add_to_write_set add an item to write set
storm_tx_commit commit a transaction
storm_register_handler register a callback handler (Table 3)

is also invoked after every RPC lookup, so that the data struc-
ture can store the returned address for future use. lookup_end
may return false even after the RPC call if, for example, the
item does not exist.

5.4 Storm transactional protocol and API

Storm is capable of executing serializable transactions effi-
ciently. It implements a typical variation of the two-phase
commit protocol that is optimized for RDMA; throughout the
execution phase, Storm copies objects to local memory and
modifies them locally. Before committing, Storm client vali-
dates that no concurrent transaction has modified the read set.
This is done using remote reads, as Storm keeps track of the
remote offsets of each individual object in the read set. Finally,
Storm uses write-based RPCs to update the objects from the
write set and unlock them. Using RPCs for writes is a widely
accepted approach in RDMA-based transactional systems, as
it reduces implementation complexity [9] [43]. Storm uses
optimistic concurrency control [17], but locks the objects that
the transaction intends to write in the execution phase.

5.5 Example remote data structure: hash table

We use a hash table as a classical remote data structure exam-
ple. We modified the MICA hash table [20] to accommodate
for zero-copy transfers and extended it with handlers from
Table 1. Zero-copy is achieved through inlining of the required
metadata, including: key, lock and version. The rpc_handler is
compatible with Storm transactions and implements lookups,
lock acquisition, updates, inserts and deletes. To lookup remote
items, the clients call into lookup_start to get the address based
on the hash. The MICA hash table allows us to change buffer
allocation and specify the bucket size, which we leverage to
reduce hash collisions. Besides hash tables, Storm allows users
to implement other data structures, such as queues and trees,
and adjust the caching strategy accordingly.

5.6 Concurrency

Asynchronous scheduling of remote reads and RPCs is a dif-
ficult task. One could use callback continuations to pipeline
multiple remote operations concurrently. While this approach
has low overhead, prior work preferred using user-level threads
(i.e., coroutines) [16, 43]. Storm leverages coroutines to pro-
vide concurrency within individual threads, while offering
blocking semantics to the developers, reducing the complexity
of building applications on top of the Storm TX API.

6 Evaluation

6.1 Methodology

We use InfiniBand EDR to evaluate key design benefits of
Storm and point out the downsides of the previous proposals.
We first briefly explain our experimental methodology.

RDMA test-bed. We deployed and evaluated Storm on a 32-
node InfiniBand EDR (100Gbps) cluster. Each machine fea-
tures a Mellanox ConnectX-4 NIC, which has similar per-
formance characteristics to ConnectX-5. In addition, we have
access to three pairs of servers, a pair for each of the three most
recent ConnectX generations (CX3, CX4, CX5), all based on
RoCE (Table 3). In addition to Storm, we also deploy and run
eRPC and our emulated and improved version of FaRM. We
were not able to deploy LITE on this cluster, as we were not
allowed to patch the kernel. Instead, we ported and deployed
LITE on our CX5(RoCE) servers and projected the results to
our CX4(IB) platform.

Emulation. With Storm we are able to emulate RDMA clus-
ters larger than 32 nodes. To achieve that, Storm allocates the
same amount of resources that would exist in a real environ-
ment, including connections and registered RDMA buffers.
For example, each thread maintains a connection to each of its
"siblings" (i.e., threads with the same local ID) on the other
servers. By varying the number of QP connections and the
amount of message buffers used per pair of threads, we can
accurately emulate clusters of 3-4x larger sizes. The maximum
size is limited because of the amount of compute that is fixed.

Workloads. We use two workloads, described next.
• Key-value lookups uses Storm to look up random keys in the
Storm distributed hash table. Each bucket has a configurable
number of slots for data. Colliding items are kept in a linked
list when the bucket capacity is exceeded. When the hash table
is highly occupied, linked list traversals are needed to find indi-
vidual keys. Each data transfer, including the application-level
and RPC-level headers, is 128 bytes in size.
• TATP is a popular benchmark that simulates accesses to the
Home Location Register database used by a mobile carrier;
it is often used to compare the performance of in-memory

SYSTOR ’19, June 3–5, 2019, Haifa, Israel Novakovic et al.

Table 3. Different evaluation platforms used in this work

Platform: CPU/memory RDMA network Max. Machines

CX3 (RoCE)

Intel Xeon Gold 5120, 192GB DRAM

Mellanox ConnectX-3 Pro 40Gbps

2CX4 (RoCE) Mellanox ConnectX-4 VPI 100Gbps

CX5 (RoCE) Mellanox ConnectX-5 VPI 100Gbps

CX4 (IB) Intel Xeon E5-2660, 128GB DRAM Mellanox ConnectX-4 IB EDR 100Gbps 32

transaction processing systems. TATP uses Storm transactions
to commit its operations.

Baselines. We compare Storm to three different baseline sys-
tems: (i) eRPC, which is a system based on Unreliable Data-
grams (UD); (ii) FaRM, a system that leverages the Hopscotch
hashtable algorithm to minimize the number of round trips;
and (iii) LITE, a kernel-based RDMA system that onloads the
protection functionality to improve scalability. eRPC does not
allow for one-sided reads and is an RPC-only system. It relies
on UD, which is an unreliable InfiniBand transport requiring
onloaded congestion control and retransmissions. We emulate
FaRM by configuring Storm with FaRM parameters and by
rewriting the hash table algorithm. Also, to provide a fair com-
parison, we do not share QPs using locks as our NICs scale
better compared to the CX3, which have been used to evalu-
ate FaRM. Finally, we improved LITE by extending it with
support for asynchronous remote operations. Asynchronous
operations are important for IOPS-bound applications, such as
transactions.

6.2 Performance at rack-scale

We first evaluate Storm in isolation using the Key-value lookups
workload. Then, we compare Storm to the previously proposed
systems using the same workload, and finally we evaluate
TATP running on Storm.

6.2.1 Key-value lookups

Figure 3 shows the performance for three different Storm
setups: (i) Storm uses only RPCs to perform lookups. We
observe that the throughput stabilizes with the node count;
more nodes amortizes the polling overhead on the receiver.
(ii) Storm(oversub) enforces lower collision rate by allocat-
ing a larger hash table. With 32 nodes the throughput is 1.7x
higher compared to Storm. The throughput is not stable as we
scale because the collision rate is not the same for different
node counts, which translates to a higher or fewer number of
reads followed by RPCs (one-two-sided), impacting through-
put. Finally, (iii) Storm (perfect) assumes no RPCs on the data
path. Using only remote reads in Storm is possible through a
combination of memory oversubscription and caching of the
addresses of pointer-linked items. At 32 nodes, Storm (perfect)
outperforms Storm by 2.2x.

0

10

20

30

40

50

4 8 12 16 20 24 28 32
Pe

r-m
n

lo
ok

up
s /

 u
se

c

Number of machines

Storm(perfect) Storm(oversub) Storm

Figure 3. Comparison of Storm configurations for a read-only key-
value workload. Average per-machine throughput on the Y-axis.

0

10

20

30

40

4 8 12 16

Pe
r-m

n
lo

ok
up

s /
 u

se
c

Number of physical machines

Storm(oversub) eRPC (w/o CC)
eRPC Lock-free FARM
Async_LITE (projected)

Figure 4. Comparison of Storm, eRPC, FaRM, and LITE. eRPC
includes two versions, with and without congestion control.

6.2.2 Key-value lookups (comparison)

In this section we compare the performance of Storm, eRPC,
FaRM, and LITE using the Key-value lookups workload. Fig-
ure 4 presents the performance of all the systems running on
a real cluster with sizes varying from 4 to 16 machines. We
were not able to deploy eRPC on more than 16 nodes (hence
X-axis goes up to 16), as our NICs do not support sufficiently

Storm: a fast transactional dataplane for remote data structures SYSTOR ’19, June 3–5, 2019, Haifa, Israel

large receive queues. eRPC relies on a large-enough number of
registered receive buffers to prevent receiver-side packet loss.
For Storm, we only plot Storm(oversub). For eRPC, we study
a version with and one without congestion control, whereas
Storm(oversub) has hardware congestion control always en-
abled. For FaRM, we use our improved emulated version that
does not require QP locks, unlike the original FaRM imple-
mentation [10]. We emulate FaRM by configuring Storm with
the same parameters from the original FaRM paper [10]. A
key difference is that we use 128B items, which increases
the bucket size in FaRM and affects throughput. Finally, we
use our improved version of LITE that enables asynchronous
remote reads and RPCs (Async_LITE).

The key takeaways are: (1) Storm significantly outperforms
previous systems. This gap is mainly due to Storm’s ability
to take advantage of fine-grain remote reads. (2) Even though
eRPC does not use a reliable transport (no connections), the
throughput decreases with node count due to the increasing
overhead of posting onto the receive queue. This issue can
be fixed using "strided" RQ, which unfortunately is not avail-
able on our infrastructure. Strided RQ enables posting a sin-
gle RQ descriptor for a set of virtually contiguous buffers.
The lack of this feature also limits us to 16 nodes. This limit
holds only for eRPC and not for other evaluated systems. (3)
eRPC with no congestion control performs 1.53x better at 16
nodes than eRPC with application-level congestion control
enabled [14], indicating that relying on the implicit congestion
control provided by RC rather than the custom congestion
control at the application level may be beneficial. For larger
message sizes, the overhead of software-managed congestion
control may be less of an issue, as reported in eRPC (20%
bandwidth degradation for 8MB message size). The overhead
of onloaded congestion control will become more problem-
atic with decreasing network latencies and increasingly higher
IOPS rates (4) FaRM with its coarse-grained reads performs
worse than eRPC, suggesting that trading larger network trans-
fers (8x) per lookup for fewer network round trips comes with
performance penalty. For items smaller than 128 bytes, FaRM
achieves higher throughput, as this results in smaller bucket
transfers. Finally, (5) LITE performs the worst due to the ker-
nel complexity. We measured the throughput on two CX5
nodes only and projected these measurements to 16 nodes.
LITE is compute-bound and does not suffer from NIC cache
thrashing. Hence, we expect the throughput to be similar when
running on clusters with CX4.

6.2.3 TATP performance

On Figure 5 we study TATP for two Storm configurations.
Both configurations allocate the same amount of memory for
the data. The configurations are as follows: (1) Storm (over-
sub) uses an oversized hash table with bucket width of one,

0
2
4
6
8

10
12
14
16

4 8 12 16 20 24 28 32

Pe
r-m

n
tra

ns
ac

tio
ns

 /
us

ec

Number of machines

Storm(oversub) Storm

Figure 5. TATP running on Storm. Lower occupancy of TATP hash
tables leads to better performance.

where each unsuccessful remote read lookup is followed by
an RPC (one-two-sided) to traverse the overflow chain. To
perform read-for-update and commit, Storm uses RPCs. The
oversized hash table results in fewer collisions and the ability
to successfully leverage remote reads most of the time; (2)
Storm always uses RPC to execute all application requests,
independent of the bucket size.

At 32 nodes, Storm (oversub) outperforms Storm by 1.49x.
The TATP workload has 16% of writes and 4% of inserts and
deletes. Writes, inserts and deletes require RPCs and thus the
improvement is not as significant as in the Key-value lookups
workload. Also, with increasing node count, the throughput
trend is similar to that of Storm in the Key-value lookups work-
load, and this is because of a larger fraction of RPCs. Again, as
we add nodes into the system, fewer cycles are wasted as the
event loop becomes more efficient in processing inbound re-
quests and managing the queues. Similar to eRPC, strided RQ
could be used in Storm to minimize the overheads associated
with managing the receive queue.

6.2.4 Impact on latency

Table 4 shows the unloaded round trip latencies of the eval-
uated systems on two of our CX4 platforms, InfiniBand and
RoCE. RoCE is generally known to have slightly higher la-
tency compared to InfiniBand. RPC latency for Storm and
eRPC is similar; both are optimized zero-copy implementa-
tions. FaRM requires transferring eight times larger blocks,
hence higher latency. LITE has the highest latency due to the
kernel overheads.

6.2.5 Physical segments

With the advent of extremely dense persistent memory tech-
nologies, we anticipate that future servers will be hosting hun-
dreds of TBs memory. For such large memory machines, the

SYSTOR ’19, June 3–5, 2019, Haifa, Israel Novakovic et al.

Platform Storm (RR) Storm (RPC) eRPC FaRM LITE

CX4 (IB) 1.8us 2.7us 2.7us 2.1us 5.8us
CX4 (RoCE) 2.8us 3.9us 3.6us 3us 6.4us

Table 4. Round-trip latencies for the various baselines and Storm.

RDMA region metadata can overwhelm the NIC caches, es-
pecially due to the MTT size. We added support for physical
segments in Storm and enforce kernel-level segment registra-
tion for security reasons. We use 4KB page sizes and compare
them to using Storm to export application memory as a phys-
ical segment. By using 4KB pages, we emulate a PB-scale
storage class memory with 1GB page size. Using physical
segments vs 4KB pages leads to 32% higher throughput.

6.3 Discussion: beyond rack-scale

In this section, we emulate larger clusters using our 32-node
CX4(IB) cluster by creating additional connections and allo-
cating additional buffers between each pair of machines [43].
Figure 6 shows the throughput as we scale the system from 32
to 128 virtual nodes. At 96 nodes and 20 threads per (physical)
node, the throughput drops by 1.57x when the NIC cache is
overwhelmed with state. Most of this state consists of connec-
tions, as we minimized the amount of MTT and MPT through
larger (2MB) pages and contiguous memory allocation.

We observe the following: (i) Up to 64 nodes, the throughput
is stable. 64 or fewer nodes is enough for most rack-scale de-
ployments, which are most common. (ii) by reducing the num-
ber of threads to 10 per server, the throughput is stable even at
128 nodes. A smaller number of threads leads to fewer initi-
ated connections, which minimizes the amount of transport-
level state. If an application requires more than 10 threads
per node, we envision a low-overhead, lock-free connection
sharing mechanism, where RDMA is exposed to only half
of the threads, which connect to their sibling threads on the
other nodes as usual. In addition, each such thread executes
RDMA requests on behalf of another thread on the same host.
This forwarding of requests can be achieved by establishing
a virtual channel (connection) between each pair of threads.
Finally, we are looking into memory management techniques
for Storm to reduce memory footprint.

7 Related Work
Other than the systems discussed in the previous sections,
there is a large body of work on RDMA-based key-value and
transaction processing systems [8, 13, 19, 26, 27, 39, 44],
distributed lock management [30, 45], DSM systems [31], PM
systems [5, 22, 37, 38, 41], and resource disaggregation [11,
33]. We discuss only a few below.

Other one-sided RDMA storage systems. Pilaf [26] uses a
self-verifying data structure to detect races and enforce syn-
chronization. This mechanism is directly applicable to Storm.

0
10
20
30
40
50

32 64 96 128

Pe
r-m

n
lo

ok
up

s /
 u

se
c

Number of emulated machines

Storm(perfect)-20x Storm(perfect)-10x

Figure 6. Emulation of larger clusters using a 32-node cluster. 128
emulated machines requires 4x more connections and RDMA buffers.
Comparison of Storm(perfect) with 20 and 10 threads per machine.

NAM-DB [7, 46] leverages multi-versioning to minimize the
overhead of running distributed transactions. Storm does not
focus on optimizing the commit protocol and instead focuses
on improving the datapath. Crail [38] is based on Java but
provides competitive performance by cutting through the Java
stack (e.g., bypasses serialization). However, Crail is better
suited to data processing systems, unlike Storm, which is opti-
mized for fine-grain one-sided transfers.

Hybrid RDMA systems. RTX [43] provides key insights
about the choice of RDMA primitive for each phase of a two-
phase commit protocol using both UD and RC transports. Un-
like RTX, Storm’s focus is on scalability. Storm uses RC only
and takes advantage of high-throughput one-sided primitives
(even for RPC). RTX validates our conclusion that one-sided
operations achieve significantly higher IOPS compared to UD-
based RPC for messages larger than 64 bytes and still opts
to use UD for RPC due to scalability concerns. In this work,
contrary to common wisdom, we show this is not necessarily
a concern. UD-based systems can achieve higher than usual
transfer rates for smaller transfer sizes (below 64 bytes) be-
cause of inlining. For example, on our testbed eRPC achieves
close to 30 million operations per second for 32-byte message
size. Our workloads require 128-byte message size.

8 Conclusion
Our analysis of multiple generations of RDMA hardware
shows that modern RDMA hardware scales well on rack-scale
clusters. We leverage these hardware improvements in Storm,
a high-performance and transactional RDMA dataplane using
one-sided reads and write-based RPCs. Our detailed evaluation
of Storm compares it to FaSST/eRPC and improved versions
of FaRM and LITE, one-sided operations are effective for
rack-scale systems.

Storm: a fast transactional dataplane for remote data structures SYSTOR ’19, June 3–5, 2019, Haifa, Israel

References

[1] Openfabrics. dynamically connected transport. https:
//www.openfabrics.org/images/eventpresos/workshops2014/
DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf, 2014.

[2] Supplement to infiniband architecture specification volume 1 release
1.2.2 annex a17: Rocev2 (ip routable roce). https://cw.infinibandta.
org/document/dl/7781, 2014.

[3] Amazon elastic fabric adapter (efa). https://lwn.net/Articles/773973/,
2018.

[4] Speculative Execution Exploit Performance Impact. https://access.
redhat.com/articles/3307751, 2019.

[5] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, S. No-
vaković, A. Ramanathan, P. Subrahmanyam, L. Suresh, K. Tati,
R. Venkatasubramanian, and M. Wei. Remote regions: a simple ab-
straction for remote memory. In Proceedings of the 2018 USENIX
Annual Technical Conference (ATC), 2018.

[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload
Analysis of a Large-Scale Key-Value Store. In Proceedings of the
2012 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, 2012.

[7] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian. The
end of slow networks: It’s time for a redesign. In Proc. VLDB Endow.,
2016.

[8] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and general dis-
tributed transactions using rdma and htm. In Proceedings of the Eleventh
European Conference on Computer Systems (EuroSys), 2016.

[9] A. Dragojevic, D. Narayanan, and M. Castro. RDMA Reads: To Use or
Not to Use? In IEEE Data Eng. Bull., 2017.

[10] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson. FaRM: Fast
Remote Memory. In Proceedings of the 11th Symposium on Networked
Systems Design and Implementation (NSDI), 2014.

[11] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. Efficient
memory disaggregation with infiniswap. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2017.

[12] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn.
RDMA over Commodity Ethernet at Scale. In Proceedings of the ACM
SIGCOMM 2016 Conference, 2016.

[13] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. W. ur Rahman,
N. S. Islam, X. Ouyang, H. Wang, S. Sur, and D. K. Panda. Memcached
design on high performance rdma capable interconnects. In Proceedings
of the 2011 International Conference on Parallel Processing (ICPP),
2011.

[14] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter rpcs can be general
and fast. In Proceedings of the 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2019.

[15] A. Kalia, M. Kaminsky, and D. G. Andersen. Design guidelines for
high performance rdma systems. In Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference (ATC), 2016.

[16] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST: Fast, Scalable and
Simple Distributed Transactions with Two-Sided (RDMA) Datagram
RPCs. In Proceedings of the 12th Symposium on Operating System
Design and Implementation (OSDI), 2016.

[17] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. In Proceedings of the ACM Transactions on Database Systems.,
1981.

[18] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel. Coordinated
and efficient huge page management with ingens. In Proceedings of the
12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), 2016.

[19] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang. Kv-direct: High-performance in-memory key-value store with
programmable nic. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP), 2017.

[20] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A holistic
approach to fast in-memory key-value storage. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2014.

[21] Y. Lu, G. Chen, B. Li, K. Tan, Y. Xiong, P. Cheng, J. Zhang, E. Chen,
and T. Moscibroda. Multi-path transport for RDMA in datacenters. In
Proceedings of the 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2018.

[22] Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: an rdma-enabled distributed
persistent memory file system. In Proceedings of the 2017 USENIX
Annual Technical Conference (ATC), 2017.

[23] LWN. A deep dive into CMA. https://lwn.net/Articles/486301/, 2012.
[24] Mellanox. Personal communication. 2018.
[25] Mellanox. Physical Address Memory Region. https://community.

mellanox.com/docs/DOC-2480, 2019.
[26] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma reads to build a

fast, cpu-efficient key-value store. In USENIX Conference on Annual
Technical Conference (ATC), 2013.

[27] C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and J. Li. Balancing
CPU and network in the cell distributed b-tree store. In Proceedings of
the 2016 USENIX Annual Technical Conference (ATC), 2016.

[28] R. Mittal, V. T. Lam, N. Dukkipati, E. R. Blem, H. M. G. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats. TIMELY:
RTT-based Congestion Control for the Datacenter. In Proceedings of
the ACM SIGCOMM 2015 Conference, 2015.

[29] T. P. Morgan. Intel shows off 3D XPoint memory performance. https:
//searchstorage.techtarget.com/definition/3D-XPoint, 2017.

[30] S. Narravula, A. Marnidala, A. Vishnu, K. Vaidyanathan, and D. K.
Panda. High performance distributed lock management services using
network-based remote atomic operations. In Proceedings of the 7th
IEEE International Symposium on Cluster Computing and the Grid
(CCGrid), 2007.

[31] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin.
Latency-tolerant software distributed shared memory. In Proceedings of
the 2015 USENIX Annual Technical Conference (ATC), 2015.

[32] R. Neugebauer, G. Antichi, J. Zazo, Y. Audvevich, S. López-Buedo, and
A. Moore. Understanding pcie performance for end host networking. In
Proceedings of the ACM SIGCOMM 2018 Conference, 2018.

[33] V. Nitu, B. Teabe, A. Tchana, C. Isci, and D. Hagimont. Welcome to
zombieland: Practical and energy-efficient memory disaggregation in a
datacenter. In Proceedings of the 13th EuroSys Conference (EuroSys),
2018.

[34] A. Panwar, A. Prasad, and K. Gopinath. Making huge pages actually
useful. In Proceedings of the 23rd International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2018.

[35] G. F. Pfister. An introduction to the infiniband architecture. High
Performance Mass Storage and Parallel I/O, 2001.

[36] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia. A remote
direct memory access protocol specification (rfc 5040). 2007.

[37] Y. Shan, S.-Y. Tsai, and Y. Zhang. Distributed shared persistent memory.
In Proceedings of the 2017 Symposium on Cloud Computing (SoCC),
2017.

[38] P. Stuedi, A. Trivedi, J. Pfefferle, R. Stoica, B. Metzler, N. Ioannou, and
I. Koltsidas. Crail: A high-performance i/o architecture for distributed
data processing. In IEEE Data Eng. Bull., 2017.

https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/7781
https://lwn.net/Articles/773973/
https://access.redhat.com/articles/3307751
https://access.redhat.com/articles/3307751
https://lwn.net/Articles/486301/
https://community.mellanox.com/docs/DOC-2480
https://community.mellanox.com/docs/DOC-2480
https://searchstorage.techtarget.com/definition/3D-XPoint
https://searchstorage.techtarget.com/definition/3D-XPoint

SYSTOR ’19, June 3–5, 2019, Haifa, Israel Novakovic et al.

[39] M. Su, M. Zhang, K. Chen, Z. Guo, and Y. Wu. Rfp: When rpc is faster
than server-bypass with rdma. In Proceedings of the 12th European
Conference on Computer Systems (EuroSys), 2017.

[40] M. M. Swift. Towards o(1) memory. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems (HotOS), 2017.

[41] A. Tavakkol, A. Kolli, S. Novakovic, K. Razavi, J. Gomez-Luna, H. Has-
san, C. Barthels, Y. Wang, M. Sadrosadati, S. Ghose, et al. Enabling
efficient rdma-based synchronous mirroring of persistent memory trans-
actions. In arXiv preprint arXiv:1810.09360, 2018.

[42] S.-Y. Tsai and Y. Zhang. LITE Kernel RDMA Support for Datacenter
Applications. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), 2017.

[43] X. Wei, Z. Dong, R. Chen, and H. Chen. Deconstructing rdma-enabled
distributed transactions: Hybrid is better! In Proceedings of the 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2018.

[44] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-memory trans-
action processing using rdma and htm. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP), 2015.

[45] D. Y. Yoon, M. Chowdhury, and B. Mozafari. Distributed lock manage-
ment with rdma: Decentralization without starvation. In Proceedings of
the 2018 International Conference on Management of Data (SIGMOD),
2018.

[46] E. Zamanian, C. Binnig, T. Harris, and T. Kraska. The end of a myth:
Distributed transactions can scale. In Proc. VLDB Endow., 2017.

[47] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang. Congestion Control for Large-
Scale RDMA Deployments. In Proceedings of the ACM SIGCOMM
2015 Conference, 2015.

	Abstract
	1 Introduction
	2 Background
	2.1 Remote Direct Memory Access (RDMA)
	2.2 Distributed in-memory systems using RDMA

	3 Motivation
	3.1 Problem statement
	3.2 Shortcomings of prior art
	3.3 Revisiting RDMA hardware capabilities
	3.4 Revisiting prior work on improved RDMA

	4 Design principles
	5 Design and Implementation of Storm
	5.1 Contiguous memory regions
	5.2 Remote write-based RPCs
	5.3 Storm remote data structure API
	5.4 Storm transactional protocol and API
	5.5 Example remote data structure: hash table
	5.6 Concurrency

	6 Evaluation
	6.1 Methodology
	6.2 Performance at rack-scale
	6.3 Discussion: beyond rack-scale

	7 Related Work
	8 Conclusion
	References

